1. (a) Find the limit of the sequence $\{x_n\}$ as $n \to \infty$, where

$$x_n = \sum_{k=1}^{n} \frac{1}{\sqrt{n^2 + k}}.$$

(b) Let g be a non-vanishing continuous real-valued function on $[0, \infty)$ such that g(x+y) = g(x)g(y) for all $x, y \ge 0$. Prove that there exists a real number a such that $g(x) \equiv e^{ax}$.

$$[5+7]=12$$

2. (a) Let f be a real-valued function defined as follows:

$$f(x,y) = \begin{cases} \frac{e^{x^2y^2} - 1}{x^2 + y^2}, & \text{if } (x,y) \neq (0,0), \\ 0 & \text{if } (x,y) = (0,0). \end{cases}$$

Is f continuous everywhere? Justify your answer.

(b) Suppose that $f: \mathbb{R} \to \mathbb{R}$ is a differentiable function such that f(x) > f(0) and f(x) > f(1) for some $x \in (0,1)$. Prove that there exists a point $x_0 \in (0,1)$ such that $f'(x_0) = 0$.

$$[6+6]=12$$

3. Let P be an $n \times n$ non-singular matrix such that $I + P + P^2 + \ldots + P^n$ is a null matrix. Find the inverse of P and the eigenvalues of P.

$$[6+6]=12$$

- 4. (a) Suppose that there are five pairs of shoes in a closet and four shoes are taken out at random. What is the probability that, among the four which are taken out, there is at least one complete pair?
- (b) Two identical independent components having lifetime T_1 and T_2 , respectively, are connected in a parallel system. Suppose that the distributions of both T_1 and T_2 are exponential initially with mean $1/\lambda$. But, whenever one component fails, the lifetime distribution of the remaining component changes to exponential with mean $1/\alpha$. If T denotes the overall lifetime of the system, find $P(T \ge t)$ for any t > 0.

$$[5+7]=12$$

5. (a) Suppose that (X,Y) has a joint distribution with $E(Y|X=x)=x^3$ for all $x \in \mathbb{R}$. If the marginal distribution of X is $\mathcal{N}(0,1)$, then prove that

(b) Suppose that $(X,Y) \sim BN(0,0,1,1,\rho)$, and define

$$Z = \frac{X - Y}{X + Y} \sqrt{\frac{1 + \rho}{1 - \rho}}.$$

Show that the distribution of Z is symmetric, and find P(Z < 0|X + Y < 0). [5+3+4]=12

- 6. Let X_1, \ldots, X_n be independent and identically distributed as Bin(m, p), where both m and p are unknown.
 - a) Write down the first two method of moments equations and solve them to find the estimators \widehat{m} and \widehat{p} .
 - b) Show that \widehat{m} and \widehat{p} are consistent for m and p, respectively.
 - c) Show that \widehat{m} and \widehat{p} are jointly asymptotically normal in the sense that

$$\sqrt{n} \left(\begin{array}{c} \widehat{m} - m \\ \widehat{p} - p \end{array} \right) \Rightarrow \mathcal{N}_2(0, \Sigma),$$

where Σ is a covariance matrix. Find Σ .

$$[3+3+6]=12$$

7. Consider the following linear model:

$$\begin{array}{rcl} Y_1 & = & \theta_1 + \theta_2 + \theta_3 + \theta_4 + \theta_5 + \theta_6 + \epsilon_1 \\ Y_2 & = & \theta_1 + \theta_2 + \theta_3 - \theta_4 - \theta_5 - \theta_6 + \epsilon_2 \\ Y_3 & = & \theta_1 - \theta_2 - \theta_3 + \theta_4 + \theta_5 - \theta_6 + \epsilon_3 \\ Y_4 & = & \theta_1 - \theta_2 - \theta_3 - \theta_4 - \theta_5 + \theta_6 + \epsilon_4 \\ Y_5 & = & -\theta_1 + \theta_2 - \theta_3 + \theta_4 - \theta_5 + \theta_6 + \epsilon_5 \\ Y_6 & = & -\theta_1 + \theta_2 - \theta_3 - \theta_4 + \theta_5 - \theta_6 + \epsilon_6 \end{array}$$

where $\epsilon = (\epsilon_1, \dots, \epsilon_6)'$, with $E(\epsilon) = \mathbf{0}$, and $V(\epsilon) = \sigma^2 \mathbb{I}$.

- a) Find an unbiased estimator of θ_i for all i = 1, ..., 6.
- b) Find the Best Linear Unbiased Estimator (BLUE) of $\theta_1 2\theta_2 + \theta_3$.

$$[7+5]=12$$

8. Consider a linear model

$$y_i = \alpha + \beta x_i + \gamma z_i + \epsilon_i, \quad i = 1, 2, \dots, n,$$

where independent observations $\{y_i\}$ of a response variable Y are regressed on two regressors X and Z and $\{\epsilon_i\}$ are unobserved independent and identically distributed with $E(\epsilon_i) = 0$ and $Var(\epsilon_i) < \infty$ for all i.

- a) Write down the normal equation for estimating the parameters (α, β, γ) by ordinary least square method. Let us denote the resulting estimates by $(\widehat{\alpha}_{OLS}, \widehat{\beta}_{OLS}, \widehat{\gamma}_{OLS})$.
- b) Suppose we alternatively fit the model as follows. First we regress Y on X by minimizing $\sum_{i}(y_i \alpha_1 \beta_1 x_i)^2$ with respect to (α_1, β_1) to get their estimates as $(\widehat{\alpha}_1, \widehat{\beta}_1)$ and compute the residuals $e_i = y_i \widehat{\alpha}_1 \widehat{\beta}_1 x_i$ for each i. In the next step, we regress $\{e_i\}$ on Z by minimizing the criterion $\sum_{i}(e_i \alpha_2 \gamma_2 z_i)^2$ with respect to (α_2, γ_2) to get their estimates as $(\widehat{\alpha}_2, \widehat{\gamma}_2)$. Show that $\widehat{\alpha}_2 = 0$ and $\widehat{\gamma}_2 = \widehat{\gamma}_{OLS}$.
- 9. Let X_1, \ldots, X_n be independent and identically distributed random variables having distribution function F_{θ} . Suppose there exists a positive integer m such that $g(X_1, \ldots, X_m)$ is unbiased for θ and $E[g(X_1, \ldots, X_m)^2] < \infty$. Prove that if there exists a UMVUE of θ for any n > m, the variance of this UMVUE must converge to zero as $n \to \infty$.
- 10. Suppose that a sample of size n is drawn using SRSWR from a finite population of N units, where N > n and $N \ge 3$. Let \bar{y} be the sample mean of the study variables corresponding to the n selected units. Now, let us assume that one variate value y_1 corresponding to one unit is known and consequently a simple random sample of size n without replacement are now drawn from the remaining (N-1) units; denote the sample mean of the study variables corresponding to these n selected units by \bar{y}_0 . Consider the following two estimators for the population total as given by

$$t_1 = N\bar{y}$$
, and $t_2 = (N-1)\bar{y}_0 + y_1$.

Prove that

- a) t_2 is unbiased for the population total.
- b) $Var(t_1) > Var(t_2)$.

[5+7]=12

